Refine Your Search

Topic

Author

Search Results

Technical Paper

Investigation of Diesel Spray Structure and Spray/Wall Interactions in a Constant Volume Pressure Vessel

1994-10-01
941918
High-speed movie films, and laser-diffraction drop sizing were used to evaluate the structure, penetration rate, cone angle, and drop size distribution of diesel sprays in a constant volume pressure vessel. As further means of evaluating the data, comparisons are made between the film measurements, and calculations from a dense gas jet model. In addition to the high-speed film data that describes the overall structure of the spray as a function of time, a laser diffraction instrument was used to measure drop size distribution through a cross-section of the spray. In terms of the growth of the total spray volume (a rough measure of the amount of air entrained in the spray), spray impingement causes an initial delay, but generally the same overall growth rate as an equivalent unimpeded spray. Agreement between measurements and calculations is excellent for a diesel spray with a 0.15 mm D orifice and relatively high injection pressures.
Technical Paper

Injection Pressure and Intake Air Density Effects on Ignition and Combustion in a 4-Valve Diesel Engine

1994-10-01
941919
Diesel engine optimization for low emissions and high efficiency involves the use of very high injection pressures. It was generally thought that increased injection pressures lead to improved fuel air mixing due to increased atomization in the fuel jet. Injection experiments in a high-pressure, high-temperature flow reactor indicated, however, that high injection pressures, in excess of 150 MPa, leads to greatly increased penetration rates and significant wall impingement. An endoscope system was used to obtain movies of combustion in a modern, 4-valve, heavy-duty diesel engine. Movies were obtained at different speeds, loads, injection pressures, and intake air pressures. The movies indicated that high injection pressure, coupled with high intake air density leads to very short ignition delay times, ignition close to the nozzle, and burning of the plumes as they traverse the combustion chamber.
Technical Paper

Coal-Water-Slurry Autoignition in a High-Speed Detroit Diesel Engine

1994-10-01
941907
Autoignition of coal-water-slurry (CWS) fuel in a two-stroke engine operating at 1900 RPM has been achieved. A Pump-Line-Nozzle (PLN) injection system, delivering 400mm3/injection of CWS, was installed in one modified cylinder of a Detroit Diesel Corporation (DI)C) 8V-149TI engine, while the other seven cylinders remained configured for diesel fuel. Coal Combustion was sustained by maintaining high gas and surface temperatures with a combination of hot residual gases, warm inlet air admission, ceramic insulated components and increased compression ratio. The coal-fueled cylinder generated 85kW indicated power (80 percent of rated power), and lower NOx levels with a combustion efficiency of 99.2 percent.
Technical Paper

Combustion and Emissions Characteristics of Minimally Processed Methanol in a Diesel Engine Without Ignition Assist

1994-03-01
940326
Mixtures of methanol, water and heavier alcohols, simulating “raw’ methanol at various levels of processing, were tested in a constant volume combustion apparatus (CVCA) and in a single-cylinder, direct-injection diesel engine. The ignition characteristics determined in the CVCA indicated that the heavier alcohols have beneficial effects on the auto-ignition quality of the fuels, as compared to pure methanol. Water, at up up to 10 percent by volume, has little effect on the ignition quality. In all cases, however, the cetane numbers of the alcohol mixtures were very low. The same fuels were tested in a single cylinder engine, set-up in a configuration similar to current two-valve DI engines, except that the compression ratio was increased to 19:1. Pure methanol and five different blends of alcohols and water were tested in the engine at five different speed-load conditions.
Technical Paper

Relationships Between Fuel Properties and Composition and Diesel Engine Combustion Performance and Emissions

1994-03-01
941018
Five different diesel fuel feedstocks were processed to two levels of aromatic (0.05 sulfur, and then 10 percent) content. These materials were distilled into 6 to 8 narrow boiling range fractions that were each characterized in terms of the properties and composition. The fractions were also tested at five different speed load conditions in a single cylinder engine where high speed combustion data and emissions measurements were obtained. Linear regression analysis was used to develop relationships between the properties and composition, and the combustion and emissions characteristics as determined in the engine. The results are presented in the form of the regression equations and discussed in terms of the relative importance of the various properties in controlling the combustion and emissions characteristics. The results of these analysis confirm the importance of aromatic content on the cetane number, the smoke and the NOx emissions.
Technical Paper

Diesel Fuel Composition Effects on Ignition and Emissions

1993-10-01
932735
Four broad boiling range materials, representative of current and future feedstocks for diesel fuel, were processed to two levels of sulfur and aromatic content. These materials were then distilled into six to eight fractions each. The resulting 63 fuels were then characterized physically and chemically, and tested in both a constant volume combustion apparatus and a single cylinder diesel engine. The data obtained from these analyses and tests have been analyzed graphically and statistically. The results of the initial statistical analysis, reported here, indicate that the ignition quality of a fuel is dependent not only on the overall aromatic content, but also on the composition of the material formed during hydroprocessing of the aromatics. The NOx emissions, however, are related mainly to the aromatic content of the fuel, and the structure of the aromatic material.
Technical Paper

Effects of Fuel Properties and Composition on the Temperature Dependent Autoignition of Diesel Fuel Fractions

1992-10-01
922229
The work described in this paper includes the preparation and combustion testing of fuels that consist of fractions of several different distillate materials that represent different feed stocks and different processing technology. Each of the fuels have been tested in a constant volume combustion apparatus to determine the relationship between ignition delay time, temperature and cetane number. These relationships are discussed in terms of the composition and properties of each fraction, and the processing that each of the feedstocks were exposed to.
Technical Paper

Effects of Different Injector Hole Shapes on Diesel Sprays

1992-02-01
920623
Twelve different hole shapes for diesel injector tips were characterized with DF-2 diesel fuel for spray cone angle over a range of injection pressures from 21 MPa (3 kpsi) to 69 MPa (10 kpsi). A baseline and two of the most radical designs were also tested for drop-size distribution and liquid volume fraction (liquid fuel-air ratio) over a range of pressures from 41 MPa (6 kpsi) to 103 MPa (15 kpsi). All hole shapes were circular in cross-section with minimum diameters of 0.4 mm (0.016 in.), and included converging and diverging hole shapes. Overall hole lengths were constant at 2.5 mm (0.098 in.), for an L/d of 6.2. However, the effective L/d may have been less for some of the convergent and divergent shapes.
Technical Paper

Emissions Measurements in a Steady Combusting Spray Simulating the Diesel Combustion Chamber

1992-02-01
920185
In-cylinder control of particulate emissions in a diesel engine depends on careful control and understanding of the fuel injection and air/fuel mixing process. It is extremely difficult to measure physical parameters of the injection and mixing process in an operating engine, but it is possible to simulate some diesel combustion chamber conditions in a steady flow configuration whose characteristics can be more easily probed. This program created a steady flow environment in which air-flow and injection sprays were characterized under non-combusting conditions, and emissions measurements were made under combusting conditions. A limited test matrix was completed in which the following observations were made. Grid-generated air turbulence decreased particulates, CO, and unburned hydrocarbons, while CO2 and NOx levels were increased. The turbulence accelerated combustion, resulting in more complete combustion and higher temperatures at the measurement location.
Technical Paper

Vegetable Oils as Alternative Diesel Fuels: Degradation of Pure Triglycerides During the Precombustion Phase in a Reactor Simulating a Diesel Engine

1992-02-01
920194
Vegetable oils are candidates for alternative fuels in diesel engines. These oils, such as soybean, sunflower, rapeseed, cottonseed, and peanut, consist of various triglycerides. The chemistry of the degradation of vegetable oils when used as alternate diesel fuels thus corresponds to that of triglycerides. To study the chemistry occurring during the precombustion phase of a vegetable oil injected into a diesel engine, a reactor simulating a diesel engine was constructed. Pure triglycerides were injected into the reactor in order to determine differences in the precombustion behavior of the various triglycerides. The reactor allowed motion pictures to be prepared of the injection event as the important reaction parameters, such as pressure, temperature, and atmosphere were varied. Furthermore, samples of the degradation products of precombusted triglycerides were collected and analyzed (gas chromatography / mass spectrometry).
Technical Paper

Engine and Constant Volume Bomb Studies of Diesel ignition and Combustion

1988-10-01
881626
Changing fuel quality, increasingly stringent exhaust emission standards, demands for higher efficiency, and the trend towards higher specific output, all contribute to the need for a better understanding of the ignition process in diesel engines. In addition to the impact on the combustion process and the resulting performance and emissions, the ignition process controls the startability of the engine, which, in turn, governs the required compressions ratio and several of the other engine design parameters. The importance of the ignition process is reflected in the fact that the only combustion property that is specified for diesel fuel is the ignition delay time as indicated by the cetane number. The objective of the work described in this paper was to determine the relationship between the ignition process as it occurs in an actual engine, to ignition in a constant volume combustion bomb.
Technical Paper

Control of Diesel Exhaust Emissions in Underground Coal Mines - Single-Cylinder Engine Optimization for Water-in-Fuel Miscroemulsions

1983-02-01
830553
The increased use of diesel-powered equipment in underground mines has prompted interest in reducing their exhaust pollutants. Control of particulate emissions without substantial penalties in other emissions or fuel consumption is necessary. This paper describes test results on a prechaaber, naturally-aspirated, four-cycle diesel engine in which two different concentrations of water-in-fuel emulsions were run. The independent variables comprising the test matrix were fuel, speed, load, injection timing, injection rate, and compression ratio. The dependent variables of the experiment included particulate and gaseous emissions and engine thermal efficiency. Regression analysis was performed on the data to determine how particulate emissions were affected by fuel and engine parameters. Results of this analysis indicated that substantial reductions in particulate emissions could be obtained by utilizing water-in-fuel emulsions.
Technical Paper

Control of Diesel Exhaust Emissions in Underground Coal Mines - Steady-State and Transient Engine Tests with a Five Percent Water-in-Fuel Microemulsion

1983-02-01
830555
This paper is the fourth in a series describing work sponsored by the Bureau of Mines to reduce diesel particulate and gaseous emissions through fuel modification. A stabilized water microemulsion fuel developed in previous work was tested in a Caterpillar 3304 NA four-cylinder engine with compression ratio and injection timing and rate optimized for this fuel to demonstrate the emissions reductions achieved. It was tested in both standard and optimum configurations with both baseline DF-2 and optimized microemulsion fuels. Gaseous and particulate data are presented from steady-state tests using a computer-operated mini-dilution tunnel and from transient tests using a total exhaust dilution tunnel. The optimized engine-fuel combination was effective in reducing particulates and oxides of nitrogen in steady-state tests. However, the standard engine-fuel combination provided the lowest particulate and NOx emissions in transient tests.
X